Ir al contenido principal

BIOMECÁNICA DE LA MARCHA

La marcha humana

La marcha es un proceso de locomoción en el que nuestro cuerpo estando de pie, se desplaza de un lugar a otro, siendo su peso soportado  de forma alternante por ambos miembros inferiores.
Mientras el cuerpo se desplaza sobre la pierna de soporte, la otra pierna se balancea hacia delante como preparación para el siguiente apoyo. Uno de los pies se encuentra siempre en el suelo y, en el período de transferencia de peso del cuerpo de la pierna retrasada a la adelantada, existe un breve intervalo de tiempo durante el cual ambos pies descansan sobre el suelo.
Resultado de imagen para male

Biomecánica de la fase de apoyo de la marcha

La fase de apoyo comienza cuando el talón contacta con el suelo y termina con el despegue de los dedos. La división en dos fases del contacto del metatarsiano del pie y de la punta de los dedos, constituye un período de doble apoyo que caracteriza la marcha y que no ocurre en la carrera. Esta fase de apoyo influye de la siguiente manera en las distintas partes del cuerpo:
1. Columna vertebral y pelvis: Rotación de la pelvis hacia el mismo lado del apoyo y la columna hacia el lado contrario, Inclinación lateral de la pierna de apoyo.
2. Cadera: Los movimientos que se producen son la reducción de la rotación externa, después de una inclinación interna, impide la aducción del muslo y descenso de la pelvis hacia el lado contrario. Los músculos que actúan durante la primera parte de la fase de apoyo son los tres glúteos que se contraen con intensidad moderada, pero en la parte media disminuyen las contracciones del glúteo mayor y del medio. En la última parte de esta fase se contraen los abductores.
3. Rodilla: Los movimientos que se producen son ligera flexión durante el contacto, que continúa hacia la fase media, seguida por la extensión hasta que el talón despega cuando se flexiona la rodilla para comenzar con el impulso. La flexión baja la trayectoria vertical del centro de gravedad del cuerpo, incrementándose la eficacia de la marcha. La musculatura actuante son los extensores del cuádriceps que se contraen moderadamente en la primera parte de la fase de apoyo, siguiendo una relajación gradual. Cuando la pierna llega a la posición vertical la rodilla aparentemente se cierra y produce una contracción de los extensores. Los isquiotibiales se activan al final de la fase de apoyo.
4. Tobillo y pie: Los movimientos producidos en este fase son la ligera flexión plantar seguida de una ligera flexión dorsal. Por ello los músculos que actúan son el tibial anterior en la primera fase de apoyo, y el extensor largo de los dedos y del dedo gordo que alcanzan su contracción máxima cerca del momento de la transición de la fase de impulso y apoyo. Sin embargo, la fuerza relativa de estos músculos está influenciada por la forma de caminar cada sujeto.

Biomecánica de la fase de Oscilación de la Marcha

Esta fase, como ya sabemos, comienza con el despegue de los dedos y termina con el choque del talón. En ella intervienen las siguientes partes del cuerpo:
1. Columna y pelvis: Los movimientos que se producen son la rotación de la pelvis en sentido contrario a la pierna que se apoya y a la columna, con ligera rotación lateral de la pelvis hacia la pierna que no se ha apoyado. La rotación de la pelvis alarga el paso y disminuye la desviación lateral del centro de gravedad del cuerpo. Entre los músculos destacan los semiespinales, oblicuo externo abdominal que se contraen hacia el mismo lado de la rotación de la pelvis. En cambio, los músculos elevador de la columna y oblicuo abdominal interno se contraen hacia el lado contrario. Mientras, el psoas y el cuadrado lumbar ayudan a mantener la pelvis hacia el lado de la extremidad impulsada.
2. Cadera: Los movimientos son de flexión, rotación externa (por la rotación de la pelvis), abducción al comienzo y al final de la fase. Para ello los músculos actuantes son el sartorio, tensor de la fascia lata, pectíneo, psoas ilíaco, recto femoral y la cabeza corta del bíceps femoral, que se contraen precozmente en 


la primera fase del impulso, cada uno con su propio patrón. El sartorio y la cabeza corta del bíceps, por ejemplo, cuando los dedos pierden el contacto con la superficie y el tensor, tanto en esta fase como en la parte media del impulso. La contracción de los isquiotibiales con una intensidad moderada durante la extensión de la rodilla, como parte de la oscilación y los glúteos mayor y medio, se contraen ligeramente al final del impulso; a su vez el glúteo mayor sirve como ayuda al equilibrio y como guía de desplazamiento hacia delante de la extremidad.

3. Rodilla: Los movimientos son la flexión en la primera mitad y extensión en la segunda parte. Para ello los músculos que trabajan al igual que en la flexión de la cadera hay una pequeña oscilación debida a los extensores del cuádriceps que se contraen ligeramente al final de esta fase, así como el sartorio y los isquiotibiales que aumentan su actividad en la marcha rápida.
4. Tobillo y pie: Hay dorsiflexión (evita la flexión plantar) y trabajan el tibial anterior, extensor largo de los dedos y del pulgar que se contraen al comienzo de la fase de oscilación y que disminuye durante la parte media de esta fase. Al final de la misma este grupo de músculos se contraen otra vez potentemente como preparación del contacto del talón; los flexores plantares están completamente relajados durante toda la fase.


Resultado de imagen para biomecanica de la marcha fase de apoyo

BIBLIOGRAFÍA:


Comentarios

Entradas populares de este blog

RADIACIÓN Y SUS TIPOS

La  radiación  es la emisión, propagación y transferencia de energía en cualquier medio en forma de ondas electromagnéticas o partículas.  Una onda electromagnética es una forma de transportar energía (por ejemplo, el calor que transmite la luz del sol). Clasificación de las radiaciones electromagnéticas Las ondas o radiaciones electromagnéticas se pueden clasificar en: Radiación no ionizante:  No tienen la suficiente energía como para romper los enlaces que unen los átomos del medio que irradian (ondas de radio y TV, microondas, luz visible, etc.). Radiación ionizante:  Tienen suficiente energía como para producir ionizaciones de los átomos del medio o materia que es irradiado. Van desde los rayos X hasta la radiación cósmica. Clasificación de las radiaciones ionizantes La radiactividad es un fenómeno físico por el cual algunos cuerpos o elementos químicos, llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar p...

LEYES DE NEWTON

Las leyes del movimiento de Newton  describen la relación entre las fuerzas que actúan sobre un cuerpo y el movimiento de este cuerpo debido a dichas fuerzas . Estas constituyen los principios fundamentales usados para analizar el movimiento de los cuerpos y son la base de la mecánica clásica.   Las tres leyes de Newton fueron publicadas en 1867 por Isaac Newton (1643-1727) en su obra   Principios matemáticos de la filosofía natural   ( Philosophiae Naturalis Principia Mathematica ). Primera ley de Newton La primera ley de Newton establece que si la resultante de las fuerzas ejercidas sobre un cuerpo es nula, el cuerpo permanecerá en reposo si estaba en reposo inicialmente, o se mantendrá en movimiento rectilíneo uniforme si estaba inicialmente en movimiento. Así,  para que un cuerpo salga de su estado de reposo o de movimiento rectilíneo uniforme, es necesario que una fuerza actúe sobre él . Segunda ley de Newton La segunda ley de Newton es el...

¿QUE ES LA BIOFÍSICA?

LA BIOFÍSICA Es una sub-disciplina de la biología que estudia los principios físicos subyacentes a todos los procesos de los sistemas vivientes.  La biofísica es la disciplina que consiste en la aplicación de los  métodos  y las  teorías   de la  física  en el campo de la  biología . Así es posible incrementar el conocimiento de los sistemas biológicos. Lo que hace la biofísica, en definitiva, es crear un nexo entre la biología (ciencia que estudia a los seres vivos en toda su complejidad) y la física (especialidad centrada en las leyes que regu lan el comportamiento de la naturaleza). La biofísica se encarga de acortar la distancia entre la complejidad de los organismos con vida y la simplicidad de las leyes físicas. Para lograr esto se dedica a la búsqueda de patrones en los seres vivos y luego los analiza con las  herramientas  de la física. Ramas de la Biofísica Biomecánica Se dedica el estudio de la estructu...